If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-243=0
a = 2; b = 6; c = -243;
Δ = b2-4ac
Δ = 62-4·2·(-243)
Δ = 1980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1980}=\sqrt{36*55}=\sqrt{36}*\sqrt{55}=6\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{55}}{2*2}=\frac{-6-6\sqrt{55}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{55}}{2*2}=\frac{-6+6\sqrt{55}}{4} $
| -7x=|-28| | | 5n+4=3n+2 | | -5x+2=-4x | | 2b*10=30 | | 2b*10=3 | | 2b*10=3, | | 3^2x+9=10×3^x | | 3y=39,y= | | 64^(2x-2)=2^(18x) | | 24.4y-11.2=7.3y-12.6 | | 3(3x+9)+6(4x+4)+3=33x+54 | | 5x=3-x=5x=7x-3 | | p-p/4=7/2+p/4 | | 11=47-7(-1-5x) | | 0.2x+6.4=-1.4x | | 3x^2+6x-56=0 | | 4(8x+3)+9(8x+9)+4=104x+98 | | 8c-(2-c)=-16+7c | | 8x+6+2x-4=4x+2 | | 0.4(x-1000)+1.1=2.9+0.2x | | Yx.85=180 | | 5x^2+19=99 | | (3x-8)²=0. | | 4(2x+4)+3=2(6x-4)-23 | | 5(h²-7)=0. | | 2x+3=2(x+7) | | 2^x-18=110 | | x^2-265=0 | | 7/x-3=14/4 | | 18=6/k | | 5/6x+7/12=1/18 | | 2/3x-6=3/2 |